Socio-Economic Research Bulletin 2023, 1-2 (84-85), 118-130
Doing Business with Artificial Intelligence in socio-economic perspective:
benefits and risks
Degtiareva Olga
Dr. Sci. in Economics, Professor, Department of Enterprise Economics and Organization
of Entrepreneurial Activity, Odessa National Economic University, Ukraine, e-mail: degtiareva@gmail.com, ORCID ID: https://orcid.org/0000-0003-1276-334X
Cite this article:
Degtiareva, О. (2023). Doing Business with Artificial Intelligence in socio-economic perspective:
benefits and risks [Sotsialno-ekonomichni aspekty zastosuvannia shtuchnoho intelektu v bisnesseredovyshchi: perevahy ta ryzyky], Socio-economic research bulletin, Vìsnik socìal’noekonomìčnih doslìdžen’ (ISSN 2313-4569), Odessa National Economic University, Odessa,
No. 1-2 (84-85), pp. 118-130.
Abstract
The article is dedicated to challenges of doing business with artificial intelligence (AI). The
current speed development of the AI technologies leads to significant benefits for those who use
them. The variety of the AI technologies was classified according to purpose, technology,
functionality, and capabilities. The simplest AI is already widely used in manufacturing enterprises,
but the application of the higher level AI-technologies and functions requires innovative design of
business processes. Because of the AI-origin and machine learning features the innovative
AI-oriented design of business processes is case-dependent, rule-driven and BigData-integrated. The
innovative reengineering of business processes can be carried out according to two schemes:
1) an artificial intelligent agent supports the manager in making management decisions, providing
the necessary information and/or recommendations; 2) an artificial intelligent agent replaces a
manager when making management decisions. The current technology development leads to
AI-adoption of a certain range of management decisions, organization of interaction between
various production processes without the company’s personnel. The classification of risks arising
from the complex AI-integration into production and management processes has been carried out,
as well as the causes and consequences of their occurrence have been analyzed. To prevent or
minimize AI risks, it is proposed to use a risk-controlling system, which is an effective tool for
removing enterprises from the high-risk zone and improving the efficiency of any activity.The special
control loop is a controlling solution for risk-management and control over AI and the risks
associated with them. Management Cockpit and/or Controlling Cockpit are recommended to
organize adequate control over AI-decissions. Thus, there are important conclusions of the research:
1) AI has a very ambitious perspectives for its further implementation in the business environment;
2) causes and consequences of the AI-risks within organization can harm operational activity,
business security, financial performance and reputational integrity; 3) AI risk-management needs
constant control that can be provided by the control loop and Management Cockpit and/or
Controlling Cockpit. Further research should be conducted to detail the functionality of the given
control loop, namely: controlling solutions for the effective and safe use of AI at an manufacturing
enterprise.
Keywords
artificial intelligence (AI); risk-controlling/management control; innovative design of
business processes; managerial decision; manufacturing enterprise.
JEL classification:L230; M150; O330; DOI:https://doi.org/10.33987/vsed.1-2(84-85).2023.118-130
UD classification: 007.5:004.89.330
References
- Mashliy, G., Mosiy, O., Pelcher, M. (2019). Information provided for labor relationship
management as compositional social responsibility of enterprises [Doslidzhennia
upravlinskykh aspektiv vykorystannia shtuchnoho intelektu], Galician economic
bulletin (Tern.), Vol. 57, No. 2, s. 80–89 DOI: https://doi.org/10.33108/galicianvisnyk_tntu2019.02.080 [in Ukrainian]
- Strategy of the artificial intelligence development in Ukraine: monograph (2023). Ed. by
A. I. Shevchenko [Stratehiia rozvytku shtuchnoho intelektu v Ukraini: monohrafiia; za red.
A. I. Shevchenko], Instytut problem shtuchnoho intelektu MON i NAN Ukrainy, Kyiv, 305 s.
[in Ukrainian]
- Azmuk, N. А. (2019). Artificial intelligence in labor processes in conditions of digital
economics: new challenges and opportunities [Shtuchnyi intelekt u protsesi pratsi u tsyfrovii
ekonomitsi: novi vyklyky i mozhlyvosti], Ekomomichnyi visnyk Donbasu, No. 3 (57),
s. 137–145. DOI: 10.12958/1817-3772-2019-3(57)-137-145 [in Ukrainian]
- Yanenkova, I. G. (2020). Advantages and risks of artificial intelligence using in Ukraine and
in the world [Perevagy ta ryzyky vykorystannia shtuchnoho intelektu v Ukraini ta sviti],
Efektyvna ekonomika, Vol. 4. DOI: 10.32702/2307-2105-2020.4.19 [in Ukrainian]
- Koehler, J. (2018). Business Process Innovation with Artificial Intelligence: Levering Benefits
and Controlling Operational Risks. European Business & Management, Vol. 4, Issue 2,
pp. 55–66. DOI: 10.11648/j.ebm.20180402.12.
- Raimondo, G. M., & Locascio, L. E. (2023). The Artificial Intelligence Risk Management
Framework (AI RMF 1.0). National Institute of Standards and Technology & U.S. Department
of Commerce. 42 p. DOI: https://doi.org/10.6028/NIST.AI.100-1.
- Cheatham, B., Javanmardian, K., & Samandari, H. (2019). Confronting the risks of artificial
intelligence. McKinsey Quarterly. Retrieved from: https://www.mckinsey.com/capabilities/
quantumblack/our-insights/confronting-the-risks-of-artificial-intelligence.
- Horváth, P., & Michel, U. (2016). Digital Controlling & Simple Finance. Die Zukunft der
Unternehmenssteuerung. 1. Auflage, Schäffer, Poeschel, 240 p.
- Reichmann, T., Kißler, M., & Baumöl, U. (2017). Controlling mit Kennzahlen – Die
systemgestützte Controlling-Konzeption, 9. Auflage, München: Vahlen, 890 p.
- Degtiareva, О. О. (2020). Transformation of controlling in the context of digitalization
[Trasformatsiia kontrolinhu v umovakh dyhitalizatsii], Prychornomorski ekonomichni studii,
Issue 54/2020, s. 104–107. DOI: http://doi.org/10.32843/bses.54-16 [in Ukrainian]
- Fadeyeva, I. G., & Gryniuk, O. I. (2019). Fuzzy logic as a risk-controlling instrument in the
context of proactive management of the oil and gas producing enterprises [Nechitka
lohika yak instrument ryzyk-kontrolinhu v konteksti proaktyvnoho upravlinnia
naftohazovydobuvnymy pidpryiemstvamy], Biznes Іnform, No. 4, s. 212–220. DOI:
https://doi.org/10.32983/2222-4459-2019-4-212-220 [in Ukrainian]
- Turing, A. (1950). Computing Machinery and Intelligence. Mind, LIX (236), pp. 433–460.
DOI: 10.1093/mind/LIX.236.433.
- Generative AI could raise global GDP by 7%. Goldman Sachs Research, 2023. Retrieved
from: https://www.goldmansachs.com/insights/pages/generative-ai-could-raise-global-gdp-by-
7-percent.html.
- Marchenko, К. M., Oryshaka, О. B., Marchenko, А. K., & Melnyk, А. M. (2022). Risks of
implementing artificial intelligence in computer systems [Ryzyky vprovadzhennia shtuchnoho
intelektu v kompiuterni systemy], Tsentralnoukrainskyi naukovyi visnyk, Seriia: Tekhnichni
nauky, Issue 5 (36), Ch. 1, s. 119–124 [in Ukrainian]
- Tereshchenko, О. О. (2005). Anti-crisis management of enterprise finances: dissertation
abstract [Antykryzove upravlinnia finansamy pidpryiemstv: avtoreferat dysertatsii doktora
ekon. nauk], Kyiv, 34 s. [in Ukrainian]
Україна, м.Одеса, 65082
вул. Гоголя, 18, ауд. 110.
(048) 777-89-16
sbornik.odeu
sbornik.vsed.oneu@gmail.com
Шановні автори!
Продовжується набір статей до 1-2 випуску 2025 р. До публікації приймаються статті українською та англійською мовами.
З 2025 року діють нові вимоги до оформлення статей в науковому журналі "Вісник соціально-економічних досліджень"
3 01.04.2025 р. встановлено нові розміри оплати за публікацію статей. Інформація про вартість публікації міститься в розділі "Оплата".
Завантажити інформаційний буклет